Fast, Scalable, Bayesian Spike Identification for Multi-Electrode Arrays
نویسندگان
چکیده
We present an algorithm to identify individual neural spikes observed on high-density multi-electrode arrays (MEAs). Our method can distinguish large numbers of distinct neural units, even when spikes overlap, and accounts for intrinsic variability of spikes from each unit. As MEAs grow larger, it is important to find spike-identification methods that are scalable, that is, the computational cost of spike fitting should scale well with the number of units observed. Our algorithm accomplishes this goal, and is fast, because it exploits the spatial locality of each unit and the basic biophysics of extracellular signal propagation. Human interaction plays a key role in our method; but effort is minimized and streamlined via a graphical interface. We illustrate our method on data from guinea pig retinal ganglion cells and document its performance on simulated data consisting of spikes added to experimentally measured background noise. We present several tests demonstrating that the algorithm is highly accurate: it exhibits low error rates on fits to synthetic data, low refractory violation rates, good receptive field coverage, and consistency across users.
منابع مشابه
Multi-electrode arrays technology for the non-invasive recording of neural signals: a review article
The recording of electrophysiological activities of brain neurons in the last half-century has been considered as one of the effective tools for the development of neuroscience. One of the techniques for recording the activity of nerve cells is the multi-electrode arrays (MEAs). Microelectrode arrays (MEAs) are usually employed to record electrical signals from electrogenic cells like neurons o...
متن کاملElectrical stimulus artifact cancellation and neural spike detection on large multi-electrode arrays
Simultaneous electrical stimulation and recording using multi-electrode arrays can provide a valuable technique for studying circuit connectivity and engineering neural interfaces. However, interpreting these measurements is challenging because the spike sorting process (identifying and segregating action potentials arising from different neurons) is greatly complicated by electrical stimulatio...
متن کاملYASS: Yet Another Spike Sorter
Spike sorting is a critical first step in extracting neural signals from large-scale electrophysiological data. This manuscript describes an efficient, reliable pipeline for spike sorting on dense multi-electrode arrays (MEAs), where neural signals appear across many electrodes and spike sorting currently represents a major computational bottleneck. We present several new techniques that make d...
متن کاملKilosort: realtime spike-sorting for extracellular electrophysiology with hundreds of channels
Advances in silicon probe technology mean that in vivo electrophysiological recordings from hundreds of channels will soon become commonplace. To interpret these recordings we need fast, scalable and accurate methods for spike sorting, whose output requires minimal time for manual curation. Here we introduce Kilosort, a spike sorting framework that meets these criteria, and show that it allows ...
متن کاملUnsupervised Spike Sorting for Large-Scale, High-Density Multielectrode Arrays.
We present a method for automated spike sorting for recordings with high-density, large-scale multielectrode arrays. Exploiting the dense sampling of single neurons by multiple electrodes, an efficient, low-dimensional representation of detected spikes consisting of estimated spatial spike locations and dominant spike shape features is exploited for fast and reliable clustering into single unit...
متن کامل